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ABSTRACT 

 

We extend the particle filtering approach to detecting 

polygonal structures of fixed shape and variable size in 

overhead images to the more practically useful case of 

unconstrained side lengths.  Our approach deals with 

multiple candidate sides by validating and clustering 

particles based on evidence that corners of proper acuteness 

and orientation (as constrained by the polygon model) might 

exist.  A queue-regulated tracking algorithm that handles 

multiple candidates across multiple sides is discussed.  

Compelling detection results in overhead images that 

involve entire families of polygonal structure are provided. 

 

Index Terms— polygon / building detection, particle filter 

 

1. INTRODUCTION 

 

The ability to efficiently detect polygon structures in 

images is of great importance for understanding overhead 

images containing man-made objects (buildings, vehicles, 

parking lots, fields…).  A particle filtering approach to 

detecting fixed-shape polygon structures of variable 

position, size, and orientation in images was presented in 

[7].  We extend the particle filtering approach to polygon 

structures for which side lengths are unconstrained.  This 

powerful new extension allows us to address the ambitious 

and more practically useful goal of quickly and 

automatically detecting entire families of polygons in 

overhead scenes – e.g., all L-shaped buildings with legs of 

any length or thickness (rather than just all L-shaped 

buildings with fixed relative side lengths as in [7]). 

Objects (polygonal or not) of fixed size and shape can 

be detected in overhead images by projecting edges of 2D or 

3D physical models onto the image and matching gradient 

directions along projected edges to pixel gradient directions 

[4,5].  For polygonal objects of fixed shape but variable size, 

matching is normally attempted by assembling collections of 

primitive features such as edges / lines as in [2,3], or corners 

/ geometric invariants as in [1,9,10].  As opposed to other 

methods in which polygon are detected by making a single 

attempt to match models to images, the efficient particle 

filtering approach in [7] combines many attempts, based on 

sequential Monte Carlo sampling, to track a single polygon 

boundary. 

Our method extends [7] to cases in which polygon side 

lengths are unknown.  In this case, particle filtering produces 

multi-modal distributions of particles in which each mode 

represents a likely side.  Weighted ensemble averages of 

particle tracks (the “blended” tracks in [7]) cannot be used 

to estimate true polygon boundaries when the distributions 

of particles are multi-modal - and there is no assurance that 

each mode will be well-sampled.  Our contribution is to 

address these issues by using the corner similarity measure 

in [6] (which also contributes to particle importance 

weights) to form particle clusters during particle filtering.  

This clustering method naturally determines the correct 

number of clusters and does not depend on initial conditions 

or parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 schematically illustrates the three stages of 

boundary tracking (initialization, tracking, and termination) 

for polygons with unconstrained side lengths on a rectangle.  

As described in Section 2, side 0 (the solid black arrow 

labeled “0”) is initialized from a pair of corners detected in 

the image (the solid dots) that satisfy geometry constraints 

on acuteness / orientation imposed by the rectangle model. 

For iteration 0 < k < n−1, side k (depicted as a dashed 

black arrow terminating on a hollow dot) is tracked by 



seeking N samples of a distribution of possible sides 

constrained by the model (see Section 3).  Hollow dots 

represent clusters of closely spaced termination points (see 

Section 3.1) for arrows emanating either from the 

initialization side (the solid dot) or a particle cluster (a 

hollow dot). 

Each arrow in Fig.1 is labeled with a sequence of from 

1 to n digits.  Digit k from the right identifies a specific 

candidate for side k.  All sides except instance 3 of side 1 

(labeled “30”) belong to tracks that complete the polygon 

(the track whose last leg is labeled “30” dies).  As discussed 

in Section 3.3, the last side (formed by connecting corner 

n−1 to corner 0 and depicted as a solid red or blue arrow) is 

accepted only if it nearly satisfies the geometry constraint (in 

which case, the arrow is blue).  A queue-regulated tracking 

algorithm that handles multiple particle clusters across 

multiple sides is discussed in Section 3.2, and several 

detection examples are provided in Section 4. 

 

2. POLYGON BOUNDARY TRACK 

INITIALIZATION 

 

Fields of pixel gradient directions {θ (c,r)} at pixels 

with column and row coordinates [c,r] can be estimated 

from pixel gray values {u(c,r)} using Sobel operators (as in 

our work) or various other methods (e.g., Canny’s method).  

Corners are detected at locations of strong match between 

pixel gradient directions and gradient directions normal to 

edges in models of corners and sides [6]. 

Following [1], we model n-sided polygons as sequences 

P* = {α
k
*  k = 0…n−1}, counterclockwise along the 

boundary, of n corners of acuteness α
k
* ∈ (0,2π) ≠ π (< π for 

concave corners).  For k = 0…n−1, corner k is defined by its 

vertex location [c
k
, r

k
], acuteness α

k
, and bisector pointing 

direction θ
k
 ∈ [0,2π).  We shall define side k in terms of the 

location / acuteness [c
k
, r

k
, α

k
] of corner k and the pointing 

direction / length [φ
k
, L

k
] of the ray that emanates from 

corner k and terminates on corner (k+1) mod n.  The bisector 

pointing direction θ
k
 for corner k relates to the corner k 

acuteness α
k
 and the side k pointing direction φ

k
 as 

(1)  θ
k
  =  (φ

k
 − iα

k
/2) mod 2π , i  =  





 

−1 α
k
 < π

 +1 α
k
 > π

 

The state vector x
k
  =

∆
  [c

k
, r

k
, α

k
, φ

k
, L

k
]
T
characterizes 

side k geometrically.  An initial side (side 0 in Fig.1) is 

defined by a pair of detected corners that satisfy geometry 

constraints on acuteness / orientation imposed by the 

polygon model, and side length: 

 

(2)  α
j
  =  min (α

j
*, 2π − α

j
*),   j = 0,1 

(3) θ
0
 + α

0
*/2  ≈  θ

1
 − α

1
*/2  

(4) L
min

  ≤  L
0
  ≤  L

max
 

 

L
min

 and L
max

 are broad constraints on minimum and 

maximum allowable side lengths.  A more thorough 

initialization is achieved by applying (2)-(4) to n cyclic 

shifts of polygon model P*, in which case, boundaries of 

polygons for which any side is represented in the field of 

detected corners will be tracked. 

 

3. BOUNDARY TRACKS FOR POLYGONS WITH 

UNCONSTRAINED SIDE LENGTHS  

 

Boundary trackers that detect polygons with 

unconstrained side lengths are described below.  We 

introduce a novel clustering technique based on photometric 

evidence of corners corresponding to unknown side lengths, 

and then describe how boundary tracks are terminated.  

 

3.1. Clusters of strong corner similarities 

 

In the particle filtering approach, pointing directions φ
k
 

and side lengths L
k
 for random samples of rays along side k 

emanating from corner [c
k
, r

k
, α

k
] are obtained by sampling 

proposed state transition densities of φ and L values 

(Fig.2a): 

 

(5) φ
k
  ~  q(φ | φ

k−1
)  with mode  φ

k
*  =  φ

k−1
 + π − α

k
* 

(6) L
k
  ~ q(L)  =  U(L

min
,L

max
) 

 

When side lengths are not constrained by the model, the 

resulting distribution of weighted (see (10)) particles          

x
i

k
 , i = 1...N is likely to be multi-modal, with peaks at 

multiple likely side termination points.  However, (a) the 

modes may be poorly sampled, (b) many particles will be 

“wasted” because they are far from modes, and (c) ensemble 

averages do not correspond to modes.  We shall thus use 

photometric information to cluster samples in advance of 

particle filtering.   

A similarity measure s(c, r, θ | α) ∈ [0,1] sensitive to 

corners of acuteness α and orientation θ at vertex pixel 

location [c,r] was proposed in [6].  For each corner 

acuteness α in polygon model P*, we search the 3D array 

{s(c, r, θ | α)} of corner similarities for clusters of at least m 

8-connected points [c,r,θ] (say m>10) that satisfy  

 

(7) [c,r,θ ] :  s(c,r,θ | α )  ≥  s
min

 

 



As discussed in [6], there are N
θ
 quantized corner 

orientations θ.  s
min

 is either user specified or the minimum 

similarity over all detected corners.   Only points [c,r,θ  | α] 

that satisfy (7) are assigned cluster labels.  Values of cluster 

labels are stored in 3D arrays {Label(c,r,θ | α )}.  The labels 

are pre-computed once. 

N attempts are made to track each side k candidate by 

sampling the state transition densities in (5)-(6) N times: 

 

(8) φ
 i
k   ~  q(φ | φ

 i

k−1) ,     L
i

k  ~  q(L) ,     i = 1...N 

 

Attempt i for a particular side k candidate is the ray of length 

L
i

k and pointing direction φ
 i
k  emanating from [c

i

k, r
i

k].  The 

associated particle is x
i

k
 = [c

i

k, r
i

k, α
i

k, φ
i

k, L
i

k]
T
.  For each 

particle, the predicted corner [c
i

k+1, r
i

k+1, θ
i

k+1, α
i

k+1] at the 

endpoint of side k is computed from x
i

k
 and P*. If 

Label(c
i

k+1,r
i

k+1,θ 
i

k+1 | α
k+1
*  ) is unassigned, the particle is 

rejected and another particle is drawn using (8).  Otherwise 

the particle is labeled with the assigned value.  All particles 

with the same label are said to be part of the same cluster.  

We impose a limit on the number of times a particle can be 

re-drawn.  More efficient sampling schemes are under 

consideration.  

When side lengths are constrained, the approach in [7] 

copes with missing sides and corners by incorporating both 

geometric information (from the model) and photometric 

information (from image pixel gray values).  However, when 

side lengths are unconstrained, the approach developed in 

this paper is more sensitive to missing information because 

in this more challenging case, boundary tracking must 

necessarily stop when photometric evidence of corners or 

sides is missing.  In this case, no clusters are found and 

tracking stops. 

Each particle x
i

k
 has an associated importance weight w

i

k 

which varies from 0 to 1.  The weights are normalized for 

any side k so as to sum to one within a cluster.  The popular 

sample-importance-resample (SIR) particle filter [8] 

computes particle weights as 

 

(10) w
i

k  =  q(z
k

 | x
i

k
)  =  q(z(x

i

k
)) 

 

where z = z(x) is the feature vector of measurements 

(observations) made from the image, and q(z | x) is a 

proposed measurements density.  Following [7], we use the 

single feature 

 

(11) z  =  z(x)  =  s(x)  =  s(c, r, θ | α)  ∈  [0,1] 

 

and the associated measurements density in Fig.2b, where θ 

is a function of α and φ (see (1)).  The SIR filter resamples 

particles on each side to prevent particle weights from 

degenerating into a single dominant value as tracking 

progresses.  For each cluster at each iteration k = 1...n−2, N 

resampled particles {x
~ i

k
} 

N

i=1 are drawn from the subset of 

weighted particles {x
i

k
} 

N

i=1, {w
i

k} 
N

i=1 belonging to that 

cluster.  Particles with higher weights are often selected 

multiple times, and particles with lower weights are often 

not selected at all (and are thus eliminated).  Importance 

weights {w
~ i

k } 
N

i=1 associated with resampled particles are 

inherited from the original particles and subsequently 

normalized.   

 

 

 

 

 

 

 

 

 

 

 

3.2. Queue-regulated multi-cluster tracking 

 
Each particle cluster is resampled independently of all 

other clusters, and in this sense is a separate particle filter.  

For ease of implementation, clusters can be maintained in a 

queue.  The initialization side is en-queued.  Then for each 

iteration k = 1...n−2 a cluster is de-queued, one particle 

filtering iteration is applied, the particles are clustered, and 

each cluster is resampled and en-queued.  When iteration 

k = n−2 is complete, the queue will contain clustered sets of 

partial tracks missing only the last side.   

 

3.3. Polygon boundary track termination 

 

From (5), the criterion for successful termination of a 

polygon boundary track can be expressed as 

 

(12) φ
n−1

  ≈  φ
n−2

 + π − α
n−1
* 

 

i.e., the actual direction of the ray pointing from corner 

[c
n−1

, r
n−1

] to corner [c
0
, r

0
] cannot deviate much from the 

direction predicted by the model.  Once successfully 

tracked, the boundary tracks in each cluster are blended into 

a single “expected” boundary.  This process can incorporate 

not just corner similarity, but also edge similarity 

measurements.  The resulting boundaries are ranked with a 

gradient direction measure ([7]). 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. EXAMPLES 

 

Fig.3-4 demonstrate the unconstrained side-length 

polygon boundary tracking algorithm for building detection 

in overhead images.  Detected polygons are filtered using a 

region homogeneousness measure and disambiguated.  Top 

ranked polygons are displayed.  Disambiguation deletes 

polygons that are too close (based on a distance tolerance) to 

a higher ranked polygon; distance is based on a Hausdorff 

measure.  Fig.3 contains the top 43 rectangles (in green) and 

top 5 “L”-shaped polygons (in red) detected using N = 50 in 

a 1024x1024 image of an industrial park (courtesy of 

CaSIL).  Shapes with multiple zero-contrast edges/corners 

are not detected.  Fig.4 contains the top 5 “L”-shaped 

polygons detected using N = 100 in a 768x768 image of an 

industrial park (courtesy of Google Earth.) 

 

6. SUMMARY AND CONCLUSIONS 

 

We have presented a novel polygon detection algorithm 

that uses a sequential Monte Carlo approach to track 

polygon boundaries without imposing constraints on the side 

lengths.  The lack of constraints results in multi-modal 

particle distributions representing probable side lengths.  To 

efficiently sample and detect these modes, particles are 

clustered based on the connected components of the 

underlying corner-similarity array.  We outlined the 

clustering method and a queue-regulated boundary tracking 

algorithm, and then presented detection results on real 

overhead images. 
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